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Abstract 

Current specialized planners for query process- 
ing are designed to work in local, reliable, and 
predictable environments. However, a number 
of problems arise in gathering information from 
large networks of distributed information. In 
this environment, the same information may re- 
side in multiple places, actions can be executed 
in parallel to exploit distributed resources, new 
goals come into the system during execution, 
actions may fail due to problems with remote 
databases or networks, and sensing may need 
to be interleaved with planning in order to for- 
mulate efficient queries. We have developed a 
planner called Sage that addresses the issues 
that arise in this environment. This system in- 
tegrates previous work on planning, execution, 
replanning, and sensing and extends this work 
to support simultaneous and interleaved plan- 
ning and execution. Sage has been applied to 
the problem of information gathering to pro- 
vide a flexible and efficient system for integrat- 
ing heterogeneous and distributed data. 

1    Introduction 
The task of information gathering requires locating, re- 
trieving, and integrating information from large numbers 
of distributed and heterogeneous information sources. 
In this environment, flexibility and efficiency are criti- 
cal. The usual approach of generating a static plan for 
processing information and then executing it is inflexi- 
ble and may be very inefficient if problems arise during 
query processing. The problem is that there may be 
many information sources from which to choose, actions 
may fail, the system has incomplete knowledge about 

"The research reported here was supported in part by 
Rome Laboratory of the Air Force Systems Command and 
the Advanced Research Projects Agency under Contract 
Number F30602-91-C-0081, and in part by the National Sci- 
ence Foundation under Grant Number IRI-9313993. The 
views and conclusions contained in this paper are those of 
the author and should not be interpreted as representing the 
official opinion or policy of RL, ARPA, NSF, the U.S. Gov- 
ernment, or any person or agency connected with them. 

the available information, and new goals may arise at 
any time. 

To address these problems, we have developed a plan- 
ning system that builds on previous work on planning, 
execution, sensing, and replanning. The planner, which 
we call Sage, was implemented by augmenting UCPOP 
[Penberthy and Weld, 1992; Barrett et al, 1993] with the 
capabilities to produce parallel execution plans [Wilkins, 
1984; Knoblock, 1994], interleave planning and execution 
[Ambros-Ingerson, 1987; Etzioni et al, 1994], support 
run-time variables for sensing [Ambros-Ingerson, 1987; 
Etzioni et al, 1992], perform replanning where appro- 
priate, and plan for new goals as they arise. We have 
integrated all of these capabilities into a single, unified 
system in which planning, sensing, and replanning can 
be performed during execution. This allows the system 
to replan portions of the plan that is currently being ex- 
ecuted, receive and plan new tasks within the context of 
the executing plan, and interleave sensing actions with 
planning in order to improve efficiency. 

Before describing the integration of planning and exe- 
cution, we first describe the information gathering task 
and how it can be cast as a planning problem in a general 
planning framework (Section 2). Next, we present our 
approach to tightly integrating planning and execution 
(Section 3). This integration is used to support planning 
for new goals, replanning for failure, and the interleav- 
ing of sensing actions to gather additional information 
for planning (Section 4). We compare this work to pre- 
vious work in planning as well as information gathering 
and query processing (Section 5). Finally, we conclude 
with a discussion of the contributions of the paper (Sec- 
tion 6). 

2    Planning for Information Gathering 
Information gathering requires selecting, integrating, 
and retrieving data from distributed and heterogeneous 
information sources in order to satisfy a query. The rel- 
evant data must be selected from numerous, possibly 
overlapping or replicated sources. Integrating the infor- 
mation may be costly, especially when combining data 
from different sites. Retrieving the information may be 
time consuming due to the distribution of data and the 
contention for limited resources. 

To solve this problem, we have developed a planner 



called Sage that builds on the UCPOP partial-order plan- 
ner [Barrett et al, 1993]. UCPOP provides an expres- 
sive operator language that includes conjunction, nega- 
tion, disjunction, existential and universal quantifiers, 
conditional effects, and a functional interface that al- 
lows preconditions to be implemented as Lisp functions. 
We extended this planner to support simultaneous action 
execution and to tightly integrate planning and execu- 
tion. The execution is presented in the next section, and 
the support for simultaneous actions was previously ad- 
dressed in [Knoblock, 1994] and will be briefly described 
here. 

Partial-order planners, such as UCPOP, produce plans 
with actions that are unordered. However, if two actions 
are left unordered they can be executed in either order, 
but not simultaneously. To execute actions in parallel in 
a partial-order planner requires that (1) actions can be 
executed simultaneously without changing the outcome 
of the individual actions, and (2) any potential resource 
conflicts must be captured in the representation of the 
operators in order to avoid conflicts during execution. 
We assume that the first condition holds (as it does in 
the information gathering domain described below) and 
we extended the planner to support the second condi- 
tion. To support reasoning about resources, we added 
an explicit resource declaration to the action language, 
which describes the resources required when executing 
an action. We also augmented the planner to identify 
and remove potential resource conflicts. With these ex- 
tensions, any actions left unordered in the final plan can 
be executed simultaneously. 

In the remainder of this section we describe how the 
information gathering task is cast as a planning problem 
in Sage. This problem requires producing a plan for gen- 
erating a requested set of data. This involves selecting 
the sources for the data, the operations for processing the 
data, the sites where the operations will be performed, 
and the order in which to perform the operations. Since 
data can be retrieved from multiple sources and the oper- 
ations can be performed in a variety of orders, the space 
of possible plans is large. 

An information gathering goal consists of a description 
of a set of desired data as well as the location where that 
data is to be sent. For example, Table 1 illustrates a goal 
which specifies that the set of data be sent to the OUT- 
PUT device of the SIMS information mediator [Arens et 
al, 1993; Knoblock et al, 1994]. The goal also specifies 
the data to be retrieved and is defined using the syntax 
of the query language of the Loom knowledge represen- 
tation system [MacGregor, 1990]. This particular query 
requests all port names of seaports that are sufficiently 
deep to accommodate "breakbulk" ships. 

The initial state of a problem defines the available in- 
formation sources (e.g., databases) and the servers (e.g., 
an Oracle DBMS) they are running on. The example 
shown in Table 2 defines two servers, an Oracle database 
server running on an HP workstation, called hp-oracle, 
and an another Oracle server running on a Sun work- 
station, called sun-oracle. Both servers contain iden- 
tical copies of the GEO and ASSETS databases. In ad- 
dition to this information, a description of the contents 

(available output sims 
(retrieve (?port-name) 

(:and (seaport ?sport) 
(port-name ?sport ?port-name) 
(channel-of ?sport ?channel) 
(channel-depth ?channel ?depth) 
(transport-ship ?ship) 
(vehicle-type-name ?ship "breakbulk") 
(max-draft ?ship ?draft) 
(< Tdraft ?depth)))) 

Table 1: An information gathering goal 

of the information sources is stored in a Loom knowl- 
edge base. However, this information is static and is 
accessed directly through the functional interface rather 
than through the literals listed in the initial state. 

((source-available geo hp-oracle) 
(source-available assets hp-oracle) 
(source-available geo sun-oracle) 
(source-available assets sun-oracle)) 

Table 2: An initial state 

For this domain, Sage uses a set of ten general oper- 
ators to plan out the processing of a query. They in- 
clude a move operator for moving a set of data from 
one information source to another, a join operator that 
combines two sets of data into a combined set of data, 
and a select-source operator for selecting the infor- 
mation source for retrieving a set of data. The other op- 
erators perform additional processing of data (select, 
compute, and assignment) or reformulate queries us- 
ing background knowledge (generalize, specialize, 
definition, and decompose). Each operator is instan- 
tiated at planning time with the particular set of data 
being manipulated as well as the database where the 
manipulation is being performed. 

Consider the operator shown in Table 3, which de- 
fines a join performed in the local system. This operator 
is used to achieve the goal of making some information 
available in the local knowledge base of the SIMS informa- 
tion mediator. It does this by partitioning the request 
into two subsets of the requested data, retrieving that 
information into the local system, and then joining the 
data together to produce the requested set of data. The 
available preconditions are achieved by other opera- 
tors and the join-partition precondition is defined by 
a function that produces the relevant partitions of the 
requested data. 

(define (operator join) 
tparameters (?join-op ?data ?data-a ?data-b) 
precondition 

(:and (join-partition ?data ?join-op 
?data-a ?data-b) 

(available local sims ?data-a) 
(available local sims ?data-b)) 

:effect (available local sims ?data)) 

Table 3: The join operator 
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Figure 1: An information gathering plan 

This planning domain differs from many of the do- 
mains that previous planning work has focused on in 
two significant ways. First, there are few interactions 
between the operators. The main source of interaction 
arises in handling resource conflicts when two operators 
require access to the same server. Second, it is not suf- 
ficient to find any solution to a problem; the goal is to 
find an efficient solution. The first difference makes the 
problem somewhat easier, while the second difference 
makes the problem significantly harder since it may re- 
quire searching a large space of plans. 

In order to generate query access plans efficiently, we 
have carefully constrained the space of possible plans. 
We wrote the operators such that they generate only the 
relevant portions of the search space. Some examples of 
this are: first, the operators only reason about joins in 
the local system, since joins in the remote systems will 
be handled by the remote database management system 
and the planner has no control over how or in what or- 
der these are performed. Second, the operators consider 
only joins across data that are distributed in different 
information sources. It will generally be less efficient to 
pull two sets of information from the same information 
source and perform the join locally rather than in the re- 
mote source. Third, since we usually do not have write 
access to the remote databases, information can only be 
moved from the remote systems to the local system or 
directly to the output. However, even with a set of care- 
fully designed operators, the search space may still be 
very large since the operations can be performed in dif- 
ferent orders, and there may be multiple replicated and 
overlapping sources from which the information can be 
retrieved. 

To further constrain the overall search for an effi- 
cient plan, we also employ standard database estima- 
tion techniques to write an evaluation function to guide 
the search. The planner uses the evaluation function in 
a branch-and-bound search, estimating the cost of each 
intermediate plan and selecting the plan with the low- 
est overall execution cost. The cost of each operation is 
estimated by maintaining information about the size of 
each relation and the number of different possible val- 
ues for each attribute of a relation. Assuming a uniform 
distribution of the data, we then estimate the amount 
of intermediate data that will be retrieved and manip- 
ulated, which is usually the dominant cost in handling 
multidatabase queries. Using the estimated cost of each 
operation, we can then compute an estimate for the over- 

all cost of a plan, taking into account the parallelism of 
some of the actions. The evaluation function allows the 
planner to compare different partial plans; those plans 
that are more expensive than the plan eventually se- 
lected will never be expanded further. 

The final plan generated for the example query in Ta- 
ble 1 is shown in Figure 1. This plan shows where the 
information is retrieved from and how the information 
is manipulated to produce the requested data. The sys- 
tem works backward from the goal to produce a plan to 
retrieve the data. In this particular plan the final move 
operator is used to achieve the original goal of sending 
the requested data to the output; it also generates the 
subgoal of getting the data into the local system. Next, 
the system considers how to get the data into the lo- 
cal system and since the information is not available in 
any single information source, it selects the join opera- 
tor, which decomposes the original goal into two simpler 
information goals. Each of these simpler goals is then 
achieved by using the select-source operator to select 
a relevant source for each of the requests and translate 
the requests into subgoals that use the terminology of 
the selected information source. These goals are in turn 
achieved by moving the information from the remote in- 
formation sources into the local system. When this plan 
is executed, all of the information is brought into the 
local SIMS mediator, where the draft of the ship can be 
compared against the depth of the seaports. Once the 
final set of data has been generated, it is sent to the 
output. 

The approach of searching the space of plans to find 
the best one is similar to what is done in other sys- 
tems for producing query plans for relational databases 
[Selinger et al., 1988]. These systems typically generate 
the space of query access plans, constraining the space 
of plans with appropriate domain-specific heuristics, and 
then evaluate the plans and select the best one. An im- 
portant difference from traditional query planning sys- 
tems is that in those systems the source from which the 
information is to be retrieved is fixed, whereas part of 
the planning process described here includes the selec- 
tion of an appropriate information source. While this 
makes the problem harder, it also provides a much more 
flexible approach to integrating distributed and hetero- 
geneous sources of information. 

So far we have described the approach to generating 
query plans for information gathering in a distributed 
and heterogeneous environment.  In addition to gener- 



ating a plan, the system must also execute it. How- 
ever, unlike traditional database environments, there are 
a number of problems and issues that arise when dealing 
with distributed and autonomous information sources. 
Information sources may be unavailable, queries may 
fail, new information requests may arise that compete 
for resources with the currently executing plan, and ad- 
ditional information may be required to select an ap- 
propriate plan or formulate an efficient query. In the 
remainder of this paper we will describe how planning 
and execution are tightly integrated and how this inte- 
gration is used to address the issues that arise during 
execution. 

3    Integrating Planning and Execution 
Planning and execution are tightly integrated by consid- 
ering execution as an integral part of the planning pro- 
cess. This is done by treating the execution of each in- 
dividual action as a necessary step in completing a plan. 
The goal of the planner becomes producing a complete 
and executed plan rather than just producing a complete 
plan. Just as achieving all of the preconditions of a plan 
is required for a complete plan, executing each of the 
actions is also part of the final result. 

Sage keeps track of the current status of every ac- 
tion in the plan by marking them as either unexecuted, 
executing, completed, or failed. This is similar to how 
execution was integrated into IPEM [Ambros-Ingerson, 
1987]. The underlying planner, UCPOP, maintains a list 
of flaws, which is an agenda of things that need to be 
done to complete a particular plan. These flaws include 
open conditions, which are subgoals that have not yet 
been achieved, and threats, which are potential interac- 
tions between operators that must be resolved by adding 
ordering or binding constraints. We integrated execution 
in Sage by adding two new types of flaws: an unexecuted 
action flaw and an executing action flaw. Whenever a 
new operator is added to a plan, the corresponding flaw 
indicating that the action is unexecuted is also added 
to the agenda. The executing flaw is used to handle the 
fact that actions are not instantaneous and in some cases 
may take considerable time. A plan is not complete until 
all unexecuted and executing flaws have been removed. 

The choice of when to execute an action in a plan is im- 
portant, since undoing an executed action may be costly 
or impossible. An action cannot be executed until every 
precondition of the action has been both planned and 
achieved by executing the preceding actions. Even after 
an action is executable, Sage delays execution as long as 
possible to avoid committing to a partially constructed 
plan prematurely. Once an action has been executed, it 
is viewed as a commitment to the plan in which the ac- 
tion occurs - the planner cannot consider any plans that 
are not refinements of the plan being executed. The idea 
is that the planner should find the best complete plan 
before any action is executed. Then once execution is ini- 
tiated, it resolves any failed subplans or new goals before 
executing the next action. This means that the planner 
will never execute an action until the corresponding plan 
is selected as the best available. 

Since executing an action may take considerable time, 

the planner cannot simply execute an action and wait 
for the results. Instead, Sage creates a subprocess that 
executes the action and notifies the planner once it has 
completed. In order to keep track of the actions currently 
being executed, the corresponding unexecuted flaw is re- 
moved from the agenda and the executing flaw is added. 
At any one time there may be a number of actions that 
are all executing simultaneously. On each cycle of the 
planner, the system checks if any executing actions have 
completed. Once an action is completed, the executing 
flaw is removed from the agenda. If it completes success- 
fully, the action is marked as completed. Other actions 
that depend on this action may now be executable if all 
of the other preceding actions have also been executed. 
If an action fails, the failed portion of the plan is removed 
and then replanned, as described in the next section. 

Sage's top-level algorithm for tightly integrating plan- 
ning and execution is summarized in Table 4. The plan- 
ner starts with an initial plan, where the goals are the 
open conditions. Initially, the set of current plans con- 
tains only this initial plan. It repeats the algorithm until 
it produces a plan in which every action has been exe- 
cuted. The planner considers only refinements of the 
current plans. Whenever an action is executed, an ac- 
tion terminates, or a new goal is added, the set of current 
plans is replaced by a new set containing only this new 
plan. The first two conditions in this algorithm ensure 
that the planner finds a plan with no open conditions 
or threats before it commits to a plan and initiates any 
actions. 

Remove a plan from the set of current plans and apply the 
first applicable condition: 

• If there are any threats, resolve them by adding ad- 
ditional constraints to the plan. Add the possible re- 
finements to the current plans. 

• If there are any open conditions, add additional ac- 
tions or ordering links to achieve them. Add the pos- 
sible refinements to the current plans. (As described 
in the next section, open conditions that contain run- 
time variables for sensing will be postponed.) 

• If any executing actions have completed: 
- If the action completed successfully, record the 

results and update the plan. If the plan is com- 
plete, return the results. Otherwise, replace the 
current plans with this new plan. 

— If the action failed, remove the failed portion 
of the plan, update the model to avoid generat- 
ing the same plan again, and replace the current 
plans with this new plan. 

• If there are any new goals to solve, add them to the 
open conditions and replace the current plans with 
this new plan. 

• If any unexecuted actions are now executable, create a 
process to execute them and replace the current plans 
with this new plan. 

Table 4: Algorithm for planning and execution 

This algorithm supports simultaneous planning and 
execution. Before the system initiates execution of any 
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Figure 2: Planning for new goals 

action, it constructs an initially complete plan. How- 
ever, once execution starts, an action could fail, a new 
goal could arise, or the system may require additional in- 
formation (sensing) to continue planning. In any of these 
cases, once the new open condition has been added to 
the list of flaws, the system can augment the executing 
plan to achieve these conditions while it continues exe- 
cuting any actions that have already been initiated. In 
the next section we describe these capabilities in more 
detail. 

4    Advantages of Integrating Planning 
and Execution 

Integrating the planning and execution allows the system 
to plan for new goals as they arrive, replan failed actions, 
and exploit sensing operations, all while the system is 
executing other actions in a plan. 

4.1    Planning for New Goals 
Interleaving planning and execution allows the system 
to handle new goals while the system is in the midst of 
executing a plan that achieves some other goals. This 
is important, since execution may require substantial 
amounts of time and it may be impractical and ineffi- 
cient to wait for one task to complete before starting the 
next task. In addition, it may not be possible to treat 
the new goal as an independent task since it may com- 
pete with the executing plan for the same resources. The 
handling of new goals is captured in the algorithm de- 
scribed in Table 4. When a new goal arises, the system 
adds this goal to the currently executing plan and then 
refines that plan to solve the goal. 

Consider an example where a new goal is given to the 
system while it is executing the plan in Figure 1. As- 
sume that the system has already executed some of the 
actions and is in the midst of executing others, as shown 
in Figure 2. When a new goal arises to retrieve the de- 
scription of the Long Beach seaport, the planner notices 
the pending goal on the next cycle and then searches for 
appropriate additions to the currently executing plan to 
solve this goal. While the system is generating this plan, 
the action in progress (shown by the action in the box 

with thick lines) continues to execute, since actions are 
run as separate processes. 

The resulting plan is shown in Figure 2. The advan- 
tage of planning this new goal in the context of the exist- 
ing plan is that shared work can be exploited and any po- 
tential resource conflicts are considered in the planning 
process. In this case, the goal requires access to the geo 
database, which is already in use by the other executing 
query. As a result, the system uses the geo database 
running on the sun-oracle server, since the other ac- 
tion that required this resource has already completed. 
The separate top-level goals are treated as independent 
goals, so if a subplan fails it will not cause unrelated 
goals to fail. In addition, as soon as any top-level goal 
is complete, the results are sent to the calling process. 
This allows the planner to run continuously and return 
results as soon as they are obtained rather than waiting 
for a plan to complete. 

4.2    Replanning Failed Actions 

Integrating planning and execution allows the system to 
gracefully handle action failures and replanning. Since 
the planner may have expended considerable effort in 
executing a plan so far, we want to avoid throwing out 
the entire plan and starting from scratch when an ac- 
tion fails. Instead, the planner should replan the failed 
portion of the plan, while maintaining as much of the 
executing plan as possible. This is currently supported 
by requiring the designer of a domain to define a set 
of domain-specific failure handlers. When a failure oc- 
curs, the failure handler is called with the action that 
failed and the type of failure, and the failure handler is 
expected to remove the failed portion of the plan and up- 
date the model to avoid the same failure when the failed 
actions are replanned. This replanning can be performed 
while other unaffected actions continue to execute. A 
more complete replanning capability could be incorpo- 
rated by using the approach developed in the Systematic 
Plan Adaptor (SPA) [Hanks and Weld, 1992], which sys- 
tematically searches the space of plan modifications. 

In the information gathering domain, the ability to 
replan upon failure can be exploited to handle query 
failures by redirecting a query to a different informa- 
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Figure 3: Replanning a failed plan 

tion source. An execution failure may occur because a 
database or network is down. In this case the failure 
handler would remove the actions for retrieving the data 
from a specific information source and would mark the 
information source as unavailable to avoid generating the 
same plan. The planner would then attempt to replan 
the query; if another information source is available it 
would generate an alternative plan. 

An example of a failed action that can be replanned 
is shown in Figure 3. The actions in the shaded boxes 
are the failed actions and the actions above the failed 
ones are the replanned actions. Since the replanned 
move action requires the same resource as the action cur- 
rently being executed, an ordering constraint is added 
between these two actions. This constraint prevents the 
replanned move action from being executed until this 
other action completes. 

4.3    Sensing to Plan 
Integrating planning and execution allows the system 
to interleave sensing actions with the planning. Ear- 
lier work on sensing in planning [Ambros-Ingerson, 1987; 
Etzioni et ah, 1992] proposed the idea of incorporating 
run-time variables in the planner to allow the planner 
to reason about the sensed information. Run-time vari- 
ables appear in the effects of operators and essentially 
serve as place holders for the value or values returned by 
the action at the point it is executed. These variables are 
useful because the result can be incorporated and used 
in other parts of the plan. An issue that arises in the use 
of run-time variables is that until desired information is 
available, the planning may have to be postponed or a 
plan with all possible contingencies will have to be pro- 
duced in order to deal with the possible returned values. 
Sage supports run-time variables and delays working on 
any open condition that involves such a variable. How- 
ever, unlike previous planners, Sage can begin execution 
of other actions while it is waiting for the sensed infor- 
mation and then continue planning while these actions 

continue to execute. 
For information gathering, there are two important 

uses of run-time variables. First, the run-time vari- 
ables can be used to retrieve information from one source 
and that information is then used to formulate queries 
to another source. Second, the run-time variables also 
can be used to retrieve information which is then used 
in the selection of the most appropriate information 
sources. We have already implemented the first use, 
which is described below, and we investigate the second 
in [Knoblock and Levy, 1995]. 

The capability for gathering information to use in the 
formulation of another query can be added to the system 
by adding two more operators to the domain, shown in 
Table 5. The first operator is simply an action to exe- 
cute a query in the local system and bind the result to 
"Iresult". As in UWL, run-time variables are annotated 
with an exclamation mark. The only precondition of this 
operator is that the information is available in the local 
system and the only effect is that the data is bound to 
the result. Note that the system will have to generate a 
subplan and execute it in order to get the information 
into the local system. 

(define (operator bind-result) 
parameters (?query Iresult) 
:precondition (available local sims ?query) 
reflect (sensed ?query iresult)) 

(define (operator use-sensed-info) 
:parameters (?source ?host ?query 

?mod-query ?sub-query ?result) 
:precondition 

(:and (sensed ?sub-query ?result) 
(available ?source ?host ?mod-query) 
(gather-data ?query ?mod-query 

?sub-query ?result)) 
:effect (available ?source ?host ?query)) 

Table 5: Operators for sensing 
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The second operator, called use-sensed-info, re- 
trieves information and uses it in the formulation of 
another query. The heart of this operator is the 
gather-data precondition, which is a function that de- 
termines whether a query can be decomposed such that 
some of the information can be retrieved and incorpo- 
rated directly into another query. If so, then it decom- 
poses the original query into a modified query and a 
sub-query, which will get executed first to return an an- 
swer. The result will then be inserted directly into the 
modified query through the run-time binding. 

Consider the example query described in the previous 
sections. Instead of executing two parallel queries, the 
system can first gather the information on the ship draft 
and incorporate that information directly into the sec- 
ond query, as shown in Figure 4. In this plan the bind- 
ing for the "max-draft," is incorporated directly into the 
query against the geo database. While the two queries 
must then be done sequentially, it will greatly reduce the 
amount of intermediate data that needs to be retrieved 
from the second query. Also, there will be no local pro- 
cessing, so the result can be sent directly to the output. 

5    Related Work 
There are a variety of systems that have tightly inte- 
grated planning with some combination of execution, 
sensing, and replanning. There is work on reactive plan- 
ning (e.g., [Firby, 1987; Beetz and McDermott, 1992]), 
which emphasizes the ability to react to unexpected 
situations rather than assume that a plan will usually 
work. This view is appropriate for some domains, such 
as robot planning, but not in domains such as informa- 
tion gathering where the cost of execution will usually 
be much higher than the cost of reasoning about actions. 
In a partial-order planning framework, Ambros-Ingerson 
[1987] developed an integrated planning, execution, and 
monitoring system called IPEM and introduced the idea 
of run-time variables for sensing. Olawsky and Gini 
[1990] focused on the tradeoffs and strategies in choos- 
ing when to sense and when to plan. Etzioni et al.[l992] 
developed a language for representing incomplete infor- 
mation and Etzioni et al.[l994] built an integrated sys- 
tem for planning, execution, and sensing called xil that 
can represent and reason about locally complete infor- 
mation. We have built on many of the ideas from the 
earlier work within the partial-order planning paradigm 

and extended them to support simultaneous planning 
and execution and build an integrated system for infor- 
mation gathering. 

The other aspect to this work is the application of the 
planner to the problem of information gathering. The XII 
planner [Etzioni et a/., 1994], which is used in the Unix 
Softbot [Etzioni and Weld, 1994], also supports execu- 
tion and sensing for information gathering. Compared 
to Sage, the Softbot reasons about the information at 
a different level of granularity. Instead of representing 
general actions for manipulating data, each operator cor- 
responds to a Unix command. The advantage of their 
approach is that it provides finer-grained control and 
reasoning of the information. The disadvantage is that 
it would be impractical to efficiently reason about and 
manipulate large amounts of information. Information 
gathering is also similar to conventional query process- 
ing in databases. These systems generate a query access 
plan and then execute it [Jarke and Koch, 1984]. There 
is no choice of which information source is used and no 
capability for interleaving the planning and execution, 
performing sensing operations, replanning due to fail- 
ures, or handling additional goals. 

6    Discussion 
This paper presented a planning system, called Sage, 
which tightly integrates planning and execution, runs 
continuously and handles new goals as they arrive, per- 
forms sensing actions, and recovers from failures that 
arise, all while continuing to execute actions already in 
progress. The contributions of this work are twofold. 
First, we extended the previous work by tightly inte- 
grating these components and adding the capability to 
execute actions simultaneously with the planning, re- 
planning, and sensing. Second, we demonstrated that 
the resulting planner can be effectively applied to the 
problem of information gathering from distributed and 
heterogeneous information sources. 

In this work we started with a real-world planning 
application and identified the issues that had to be ad- 
dressed to solve this problem. While there is a significant 
amount of previous work on planning that we could build 
on, the emphasis and assumptions in previous work do 
not closely match the problems that arise in this domain. 
For example, in terms of generating plans, the interac- 
tions between actions do arise, but they are not the dom- 



inant problem. Issues that are important in this domain 
are finding high quality plans, exploiting parallelism in 
the plans, and planning and executing simultaneously to 
support planning for new goals, replanning and sensing. 
In order to put all of this work together and turn it into 
a practical planning system, the resulting planner makes 
some simplifying assumptions that may not hold in other 
domains. However, the basic architecture is quite general 
and has been demonstrated in a real-world application. 

Sage serves as the underlying query planner for the 
SIMS information mediator [Arens et al, 1993; Knoblock 
et al, 1994]. The goal of SIMS is to provide flexible and 
efficient access to large numbers of information sources. 
We have implemented the planning, execution, replan- 
ning, and sensing as described in this paper. The current 
system has been used in the domains of logistics plan- 
ning and trauma care and provides access to data stored 
in a variety of systems that are distributed at various 
sites. 
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